WedgeDB: transaction processing for edge databases

Abhishek A. Singh
Univesity of California, Santa Cruz
Santa Cruz, California 95064
Email: abasingh@ucsc.edu

Summary

WedgeDB is an attempt to create an Edge database
optimized for read only transactions. The current imple-
mentation of WedgeDB is built as a key-value store which
supports distributed transaction processing. The network is
divided into two specific types of nodes: Edge and Cloud.
Cloud nodes host applications and perform view changes for
distributed consensus. WedgeDB’s design goal is to enable
efficient execution of serializable transactions on the edge
nodes. In WedgeDB Data is partitioned into clusters. A small
number of closely connected (locality aware) Edge nodes are
added to the cluster to ensure data replication and byzantine
consensus on any transaction affecting the data in the parti-
tion. The nodes in the cluster are assigned by the Cloud node
which is a trusted node in the WedgeDB network model.
An edge node in the cluster is also designated as a leader
to coordinate transaction execution. The rest of this paper
discusses transaction processing on the Edge nodes.

Transactions are divided into types: read-only and read-
write transactions and are processed differently. Read-only
transactions can be processed by any of the nodes in a par-
tition cluster whereas read-write transactions are processed
by the leader of the partition using a deterministic transac-
tion processing algorithm. Transactions are buffered by the
client during execution. Clients create a transaction object
which executes read-only transactions whenever data needs
to be retrieved. The results of the read-only transaction are
buffered as read-history in the transaction object. Any write
operation performed using the transaction object is buffered.
A call to commit the transaction results in the transaction ob-
ject sending the transaction read history and write operations
to one of the WedgeDB servers. The database, therefore
supports two operations: read and commit. Every transaction
response (either to read-only or read-write) sent back to the
client contains a verifiable proof of its execution by every
node that took part in the consensus.

When a client sends a read-write transaction to a cluster,
the transaction is forwarded to the leader of the cluster. The
transaction is added to a transaction batch and is verified
to be serializable when added to a batch. If the transaction
is serializable in the batch and consistent with the current
history of the leader’s data history, it can be committed.
Transactions received by a cluster may also have operations
which need to be executed by other clusters. These trans-

actions are called Distributed transactions and are handled
differently from transactions that affect data only on one
partition - called “Local” transactions as they affect data
local to one partition. When processing ’Local” transactions,
batches formed by the partition leader are committed via
PBFT [1]. The prepare message contains the transactions in
the entire batch. Once the other nodes in the cluster receive
the transaction they verify if the transactions in the batch
are serializable with their local history of the database. The
normal phases of the PBFT consensus then continue. During
the commit phase, each node also maintains and updates its
local merkle tree with the updated keys committed during
the transaction and forms a new merkle tree for the trans-
action batch [2]. The root of the tree along with nodes that
affected the construction of the root of the merkle tree is
signed and added to each transaction response by the nodes
in the cluster as a proof of the transactions committed in the
batch. This proof is stored by each node and allows read-
only transactions to provide a proof of execution for every
read-only transaction received by a node.

Distributed transactions span multiple partition clusters
and are executed using two phase commit (2PC). Once
cluster C’s leader receives a distributed read-write transac-
tion 7T, it creates a prepare request Pr for each cluster K;
whose keys are referenced in 7'. Each cluster K;’s leader
then verifies the transaction and responds with a prepare
response. Once the transaction has been prepared by all
cluster K;, a commit is issued by C. Within each cluster
the transaction processing algorithm described previously is
executed.

Additionally, we maintain a vector clock for distributed
transactions to support consistent reads across data clusters
[3]. The vector clock is formed using the batch numbers
of the during which the transaction was prepared by the
remote cluster. This allows data to be read from a consistent
checkpoint.

In conclusion, we have briefly described WedgeDB, a
distributed key-value store which supports efficient read-
only transactions, serializable transaction processing, con-
sistent reads across partitions and byzantine fault tolerance.

References

[1] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
Proceedings of the Third Symposium on Operating Systems Design



(2]

(3]

and Implementation, OSDI °99, pages 173-186, Berkeley, CA, USA,
1999. USENIX Association.

R. Jain and S. Prabhakar. Trustworthy data from untrusted databases.
In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 529-540, Apr. 2013.

D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP 95, pages
172-182, New York, NY, USA, 1995. ACM. event-place: Copper
Mountain, Colorado, USA.



